

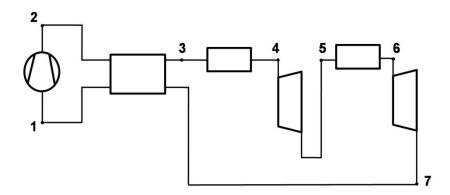
Institut für
Energie- und Verfahrenstechnik

Thermodynamik
und Energietechnik
Prof. Dr.-Ing. habil. Jadran Vrabec

Thermodynamik 1

Klausur

	02. März 2012
Bearbeitungszeit:	120 Minuten
Umfang der Aufgabenstellung	: 5 nummerierte Seiten
Alle Unterlagen zu Vorlesung zugelassen.	und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel
•	ellung bitte zusammen mit Ihren Lösungsblättern ab. Füllen Sie die und versehen Sie jedes Lösungsblatt mit Ihrem Namen.
Name:	
Vorname:	
Matrikelnummer:	
Unterschrift:	


Angaben zur Korrektur

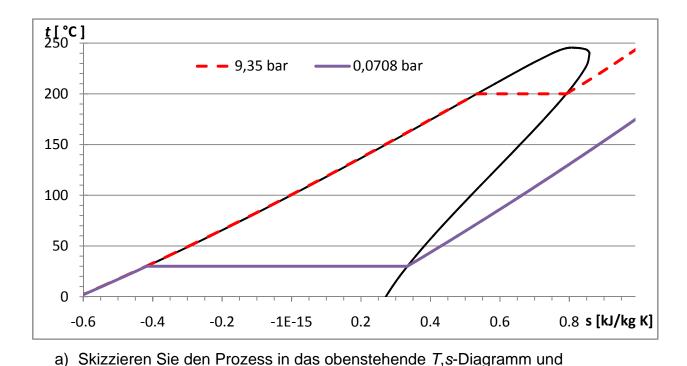
Aufgabe	Maximale Punktzahl	Erreichte Punkte	Korrektor
1	19		
2	21		
3	10		
	Zwischensumme Bonuspunkte Summe Bewertung		

Aufgabe 1 (19 Punkte)

In einer geschlossenen Gasturbinenanlage durchläuft das Arbeitsmedium (Luft) folgende Zustandsänderungen:

- 1 \rightarrow 2: reversibel isotherme Verdichtung von Zustand 1 (t_1 = 20 °C, p_1 = 1,5 bar, \dot{V}_1 = 4750 m³/h) auf Zustand 2 mit einem Druckverhältnis von $\Pi = p_2/p_1$ = 12,25
- 2 \rightarrow 3: reversibel isobare Wärmezufuhr in einem nach außen adiabaten idealen Wärmeübertrager, $t_3 = t_7$
- $3 \rightarrow 4$: reversibel isobare Wärmezufuhr bis zur Temperatur $t_4 = 600 \, ^{\circ}\text{C}$
- 4→ 5: reversible adiabate Expansion in der Turbine
- 5 →6: reversibel isobare Zwischenüberhitzung
- 6 \rightarrow 7: reversible adiabate Expansion in der Turbine bis zur Temperatur t_7 = 430 °C
- 7→ 1: reversibel isobare Wärmeabgabe an das vorzuwärmende Arbeitsmedium in einem nach außen adiabaten idealen Wärmeübertrager

Für die Berechnungen soll Luft als ideales Gas angenommen werden. Die Druckverhältnisse beider Turbinen sind gleich groß: $p_4/p_5 = p_6/p_7$


Stoffdaten der Luft:

 $R = 0.287 \text{ kJ/(kg K)}, c_{p,L} = 1.0045 \text{ kJ/(kg K)}, \kappa_L = 1.4$

- a) Skizzieren Sie den Prozess in einem p, v- und T, s Diagramm. (7 P)
- b) Berechnen Sie die Temperaturen T_5 und T_6 . (4 P)
- c) Berechnen Sie alle zu- und abgeführten spezifischen Wärmeströme. (4 P)
- d) Wie groß sind die Turbinenleistungen P_{45} und P_{67} ? (3 P)
- e) Berechnen Sie den thermischen Wirkungsgrad der Gasturbinenanlage. (1 P)

Aufgabe 2 (21 Punkte):

Bei der energetischen Nutzung von Biogas in einem Gasmotor entsteht außer der mechanischen Nutzenergie reichlich Abwärme, die in einem nachgeschalteten ORC-Prozess in zusätzliche Nutzleistung umgewandelt werden soll. Eine projektierte ORC-Anlage soll zu diesem Zweck mit dem Arbeitsmedium Hexamethyldisiloxan (HMDS) arbeiten. Das flüssige Arbeitsmedium wird um 5 K unterkühlt (Zustand 1) von der Pumpe angesaugt und adiabat (Wirkungsgrad $\eta_{s,P} = 0.7$) auf den Verdampferdruck, $p_2 = 9.35$ bar, gefördert (Zustand 2). In einem inneren Wärmeübertrager wird die Flüssigkeit vorgewärmt bis zur Temperatur $t_3 = 109,46$ °C, mit Wärme, die dem entspannten Dampf entnommen wird (5→6). Anschließend wird die Abwärme des Gasmotors zur Vorwärmung, Verdampfung und Überhitzung bis zum Zustand 4 genutzt. Das um 10 K überhitzte Gas wird in der Turbine adiabat (Wirkungsgrad $\eta_{s,T} = 0.9$) auf den Kondensatordruck entspannt (Zustand 5) und gibt danach Wärme bis zur Temperatur T₆ an die Flüssigkeit (2→3) ab und anschließend bis t_1 an Kühlwasser, welches sich von 15°C auf 20°C erwärmt. Die Kondensation findet bei 30°C statt.

- zeichnen Sie ein Anlagenschema. (5 P)
- b) Berechnen Sie die spezifischen Turbinen- und Pumpenarbeiten. (6 P)
- c) Wie viel Wärme muss aus dem Abgas des Biogasmotors aufgenommen werden, um eine Nutzleistung von 30 kW zu erzielen? (5 P)
- d) Wie groß ist der exergetische Wirkungsgrad ($t_u = 10^{\circ}$ C)? (2 P)
- e) Wie groß ist der Massenstrom des Kühlwassers ($c_{p,KW} = 4,19 \text{ kJ/(kg K)}$)? (3 P)

Die Stoffdaten von HMDS sind auf der nächsten Seite.

Zweiphasengebiet HMDS:

t	р	ρ'	ho"	h'	h"	s'	s"
°C	bar	kg/m³	kg/m³	kJ/kg	kJ/kg	kJ/kgK	kJ/kgK
10	0,02439	772,84	0,16907	-178,94	58,010	-0,54666	0,29016
20	0,04251	763,43	0,28533	-160,11	72,168	-0,48134	0,31102
30	0,07080	753,91	0,46112	-141,06	86,579	-0,41744	0,33346
40	0,11329	744,24	0,71725	-121,76	101,22	-0,35483	0,35724
50	0,17485	734,41	1,0786	-102,22	116,09	-0,29343	0,38212
190	7,8459	553,77	45,363	202,37	334,17	0,48182	0,76638
200	9,3500	533,64	55,82	227,02	348,85	0,53388	0,79136
210	11,064	510,93	69,054	252,31	362,81	0,58608	0,81479

Überhitzter Dampf und unterkühlte Flüssigkeit von HMDS:

		1 1	1.		l			I	1 ,	_
°C	<i>p</i> bar	$ ho$ kg/m 3	<i>h</i> kJ/kg	s kJ/kgK		°C	<i>p</i> bar	$ ho$ kg/m 3	<i>h</i> kJ/kg	s kJ/kgK
20	9,35	765,14	-159,33	-0,48284		20	0,0708	763,44	-160,11	-0,48135
30	9,35	755,75	-140,30	-0,40204		25	0,0708	758,69	-150,61	-0,44922
-				· · · · · · · · · · · · · · · · · · ·			-	·		
40	9,35	746,23	-121,02	-0,35644		30	0,0708	753,91	-141,06	-0,41744
50	9,35	736,55	-101,51	-0,29510						
60	9,35	726,7	-81,742	-0,23486		30	0,0708	0,46112	86,579	0,33346
70	9,35	716,64	-61,721	-0,17565		40	0,0708	0,44577	101,61	0,38224
80	9,35	706,34	-41,437	-0,11738		45	0,0708	0,43849	109,24	0,40641
90	9,35	695,75	-20,885	-0,06000		50	0,0708	0,43146	116,94	0,43043
100	9,35	684,84	-0,0573	-0,00342		60	0,0708	0,41809	132,57	0,47805
109,46	9,35	674,18	19,907	0,04941		70	0,0708	0,40557	148,49	0,52513
110	9,35	673,56	21,055	0,05241		80	0,0708	0,39380	164,69	0,57169
120	9,35	661,83	42,460	0,10756		85	0,0708	0,38817	172,91	0,59478
130	9,35	649,59	64,171	0,16209		90	0,0708	0,38271	181,19	0,61774
140	9,35	636,72	86,201	0,21606		95	0,0708	0,37741	189,54	0,64059
150	9,35	623,11	108,57	0,26956		100	0,0708	0,37226	197,97	0,66332
160	9,35	608,58	131,30	0,32266		105	0,0708	0,36725	206,46	0,68593
170	9,35	592,88	154,44	0,37546		110	0,0708	0,36237	215,03	0,70843
180	9,35	575,65	178,03	0,42810		115	0,0708	0,35763	223,66	0,73082
190	9,35	556,28	202,17	0,48079		120	0,0708	0,35301	232,36	0,75309
200	9,35	533,64	227,02	0,53388		125	0,0708	0,34852	241,13	0,77526
						130	0,0708	0,34413	249,97	0,79731
200	9,35	55,821	348,85	0,79136		135	0,0708	0,33986	258,87	0,81926
210	9,35	51,580	372,16	0,84011		140	0,0708	0,33570	267,84	0,84111
220	9,35	48,415	394,85	0,88661		145	0,0708	0,33164	276,88	0,86285
230	9,35	45,888	417,25	0,93156		150	0,0708	0,32768	285,98	0,88449

Aufgabe 3 (10 Punkte):

Eine blaue 1,20 m hohe zylindrische Stahltonne mit der Masse 10 kg ist zu Beginn eines Versuchs mit Luft im Umgebungszustand ($p_u = 1,0142$ bar, $t_u = 20$ °C) gefüllt. Die Masse der Luft beträgt $m_{\text{Luft}} = 0,409$ kg.

Im Laufe des Versuchs wird die Tonne zum Teil mit Wasser gefüllt und auf t_1 = 100°C aufgeheizt. Das verdampfende Wasser reißt hierbei die Luftmoleküle durch eine kleine Öffnung im Tonnendeckel mit in die Umgebung, so dass sich nach einiger Zeit ausschließlich Wasser und Wasserdampf in der Tonne befindet. Der Flüssigkeitsspiegel hat dann eine Höhe von 5 cm und die Tonne wird verschlossen (Zustand 1).

b) Wie groß ist die Normalkraft, die im Zustand 1 auf einen cm² der Seitenwand der Tonne einwirkt? Wie groß ist die Gewichtskraft, die von der Tonne auf den Erdboden ausgeübt wird ($g = 9.81 \text{ m/s}^2$)? (4 P)

Nun wird die Stahltonne durch Besprühen mit Wasser abgekühlt. Bei der Temperatur t_2 (Zustand 2) implodiert die Tonne schlagartig auf 60% des Ausgangsvolumens, da die Seitenwand versagt. Die Zustandsänderung 1 \rightarrow 2 kann als isochor angesehen werden. Am Ende des Abkühlungsvorgangs erreicht das Wasser die Umgebungstemperatur (Zustand 3).

- c) Wie groß ist die Temperatur t_2 , wenn 1 cm² der Seitenwand einer Differenzkraft von $F_{\text{max}} = 9,404 \text{ N}$ standhalten kann? (2 P)
- d) Skizzieren Sie die Zustände 1 bis 3 in einem p, v-Diagramm. (2 P)

Luft kann als ideales Gas mit $c_v = 0.714$ kJ/(kg K) und R = 0.287 kJ/(kg K) angesehen werden.

Stoffdaten von Wasser:

Kritische Daten: t_c = 373,95 °C, p_c = 220,64 bar

Wasser im Nassdampfgebiet:

race in race and pigesion							
t	р	ρ'	ho"	u'	u"	s'	s"
°C	bar	kg/m³	kg/m³	kJ/kg	kJ/kg	kJ/(kg K)	kJ/(kg K)
20	0,0234	998,16	0,0173	83,912	2402,3	0,2965	8,6660
40	0,0738	992,18	0,0512	167,53	2429,4	0,5724	8,2555
60	0,1995	983,16	0,1304	251,16	2455,9	0,8313	7,9081
80	0,4741	971,77	0,2937	334,96	2481,6	1,0756	7,6111
100	1,0142	958,35	0,5982	419,06	2506,0	1,3072	7,3541